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Abstract Similarity-Projection structures abstract the numerical properties of real scalar
product of rays and projections in Hilbert spaces to provide a more general framework for
Quantum Physics. They are characterized by properties that possess direct physical meaning.
They provide a formal framework that subsumes both classical Boolean logic concerned
with sets and subsets and quantum logic concerned with Hilbert space, closed subspaces
and projections. They shed light on the role of the phase factors that are central to Quantum
Physics. The generalization of the notion of a self-adjoint operator to SP-structures provides
a novel notion that is free of linear algebra.
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1 Introduction

In [5], H. Whitney abstracted the properties of linear dependence from the setting of vector
spaces. This paper represents a similar endeavor to abstract the properties of both linear
dependence and projections on closed subspaces from the vector space structure of Hilbert
spaces.

A system of Quantum Physics is described by a set � of pure states. In traditional presen-
tations those pure states are modeled as rays, i.e., one-dimensional subspaces, of a Hilbert
space. The main structure possessed by � is its real scalar product. Given any two rays x, y

their real scalar product p(x, y) is a real number in the interval [0,1], customarily described
as a transition probability. This quantity is physically meaningful and can be measured in
experiments. It seems to be the only physically meaningful quantity: the only physical prop-
erty that can be directly measured. The purpose of this paper is to study the properties of
this quantity.
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This paper studies the properties of the real scalar product of rays in Hilbert spaces.
Surprisingly, such a study has not been pursued very actively so far. An algebraic character-
ization of the properties of real scalar product of rays in Hilbert space would be interesting,
but is not the primary goal we are seeking. Some of those properties are not satisfied by
the spaces in which Quantum Physics is done, which include superselection rules. For ex-
ample the following is a property of p, the real scalar product of rays that is satisfied in
all Hilbert spaces but not when superselection rules are introduced: for any distinct rays
x, y, there exists a ray z such that 0 < p(x, z) < 1. This paper’s goal is to propose a list,
as extensive as possible, of properties of the real scalar product of rays that are physically
meaningful and satisfied in all spaces used by Quantum Physics, including classical systems
and superselection rules.

Phase factors play a central role in the thinking of Quantum physicists. We shall examine
the nature of those phase factors, ask whether they can be defined in terms of the real scalar
product of rays. We shall see that the cosine of those phase factors are definable in terms
of the real scalar product of rays. We shall consider whether the phase factors themselves
have physical meaning or whether only some trigonometric function of those phase factors
is meaningful.

In a previous paper Lehmann, Engesser and Gabbay [3] proposed a qualitative study of
projections in Hilbert spaces and proposed M-algebras as an abstraction of properties of
projections in Hilbert spaces meaningful for Quantum Physics. The present paper builds on
this first effort and shares its philosophy. This paper is a direct successor of [2] which is a
concrete study of Hilbert spaces, but failed to give a proper analysis of the phase factors and
of [1] which proposes a numberless analysis of projections on subspaces.

2 Similarity

The Similarity-Projection structures (from now on, SP-structures) will be introduced gently
and slowly. We are defining structures that include a non-empty set (the carrier) �. The
elements of � are to be thought of as pure states. Elements of � will indeed be called states.

A characteristics of Quantum Physics is that pure states have a dual aspect: they are both
states and questions (i.e., observables). A state x ∈ � can be understood both as a state as
in “the system is in state x” and as a question like “let us measure whether the system is
in state x or not”. Given two states x and y, if a system in state x is asked whether it is
in y, there is, in Quantum Physics, a certain “probability” that the answer will be positive.
Given two pure states s1 and s2, one can measure the probability that one will obtain s2 when
measuring, in state s1, whether s2 holds or not. Think, for example, about the simplest of
quantum systems: a particle of spin 1/2, let s1 be the state | +〉 in which the spin is up in the
z-direction, and s2 be the state in which the spin is up in the x-direction. We know that the
measurement of the spin in the x-direction will, on a system in state s1 give the answer up
with probability 1/2 and the answer down with the same probability.

The first structural ingredient in the definition of SP-structures is therefore a real function
p : � × � −→ R. If x and y are states, the real number p(x, y) is to be understood as the
similarity of x to y, or, in the language used by physicists, the transition probability between
x and y.

3 Hilbert and Classical SP-Structures

We shall now present two paradigmatical examples of such similarity functions p. The first
example covers what we shall call Hilbert SP-structures. Assume H is a Hilbert space and �
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is the set of unit vectors of H. For any �x, �y ∈ � define p(�x, �y) to be the real scalar product
of �x and �y: p(�x, �y) =| 〈�x, �y〉 |2. Note that we depart from the presentation that dates back
at least to von Neumann of taking � to be the set of rays, i.e., one-dimensional subspaces
of H. We consider unit vectors, not rays. This is, in fact, closer to the every day practice of
physicists.

The second example consists of an arbitrary set � and a similarity function defined by:
p(x, y) = 1 if x = y and p(x, y) = 0 otherwise. We shall call such structures classical SP-
structures.

4 Symmetry and Non-Negativity

We shall now list a number of properties of the similarity p that we want to assume in any
SP-structure. We shall draw some consequences of those assumptions as we proceed.

Since we are dealing with structures of the type 〈�,p〉 it is natural to define as equivalent
any two elements of � that behave in exactly the same way as far as p is concerned.

Definition 1 Any two states x, y ∈ � are said to be equivalent, and we write x ∼ y iff for
any z ∈ �, one has: p(x, z) = p(y, z).

The relation ∼ is obviously an equivalence relation. In classical SP-structures, one has
x ∼ y iff x = y. In Hilbert SP-structures two unit vectors are equivalent iff they differ by a
phase factor.

4.1 Symmetry

Our first assumption is a symmetry assumption.

Property 1 (Symmetry) For any x, y ∈ �, p(y, x) = p(x, y).

Symmetry is an experimentally verifiable and fundamental property of Quantum Me-
chanics, see, e.g., the Law of Reciprocity in [4], p. 35. It is satisfied by scalar product of
rays. It is also obviously satisfied in classical SP-structures.

Nevertheless Symmetry may be telling us more about our intellectual processes, our
logic, than about the structure of the physical world out there. If we accept the idea that
states possess the dual aspects of states the world is in and of states we can test for and
that two states are linked by the fundamental p(x, y), rejecting Symmetry would be akin to
rejecting the idea that those dual aspects of states are aspects of the same entity, and imply
we are dealing with two different types of entities.

4.2 Non-Negativity

Our second assumption is that the similarity p is nonnegative:

Property 2 (Non-negativity) For any x, y ∈ �, p(x, y) ≥ 0.

This is requested by the interpretation of p as a “probability” and is obviously satisfied by
the scalar product of rays and in classical SP-structures. It seems that Non-negativity does
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not tell us anything about the physical world but is a logical requirement following from the
way our experiments are built.

Since 0 has a special meaning, as the smallest possible value for p, it is natural to pay
special attention to those pairs x, y for which p(x, y) = 0. Following common usage we
shall say that x and y are orthogonal and write x ⊥ y iff p(x, y) = 0. Note that y ⊥ x iff
x ⊥ y, by Symmetry. Similarly we shall say that x is orthogonal to a set A of states and
write x ⊥ A iff p(x, y) = 0 for every y ∈ A. Note that for any state x, x ⊥ ∅. We shall use
the notation B ⊥ A to mean: for every x ∈ A,y ∈ B , one has: x ⊥ y.

Definition 2 A set A of states will be called an ortho-set iff any two distinct elements of A

are orthogonal: for any x, y ∈ A such that x �= y, one has x ⊥ y.

Note that the empty set is an ortho-set and so is any singleton set. Ortho-sets play a
central role in our analysis. They represent states that correspond to different values of an
observable physical quantity.

We shall now generalize p to accept not a single state, but any ortho-set of states as a
second argument. If x ∈ � and A ⊆ � is an ortho-set, we define

p(x,A) =
∑

y∈A

p(x, y).

The (finite or infinite) sum above is independent of the order of summation. Note that
p(x,A) is either a nonnegative real number or +∞.

5 Boundedness, Subspaces

We may now introduce our next requirement.

Property 3 (Boundedness) For any state x ∈ � and any ortho-set A, p(x,A) ≤ 1.

The last inequality should be understood as: p(x,A) is finite and at most one. Again this
is a fundamental property in Quantum Physics. The elements of an ortho-set A represent dif-
ferent possible answers to a unique test. The sum of the “probabilities” of obtaining certain
answers cannot be greater than one. Boundedness is satisfied both in Hilbert and in classical
SP-structures. Again, Boundedness seems to be a logical requirement, following from our
interpretation of orthogonal states as corresponding to different values and of similarity as a
transition probability.

Definition 3 If A is an ortho-set, the subspace Ā ⊆ � generated by A is defined by: Ā =
{x ∈ � | p(x,A) = 1}. The ortho-set A is said to be a basis for Ā. A basis is a basis for �. A
subspace is a set of states X ⊆ � such that there exists some ortho-set A such that X = Ā.

In classical structures Ā = A.
In the following lemma, and throughout this paper we shall assume that the structure

〈�,p〉 satisfies all the assumptions previously made. In Lemma 1, therefore, p is assumed
to satisfy Symmetry, Non-negativity and Boundedness.

Lemma 1 Let A be an ortho-set. For any x ∈ �, p(x,A) ∈ [0,1]. In particular,
p(x, y) ∈ [0,1] for any y ∈ �.
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Proof By Non-negativity, we have p(x,A) ≥ 0. By Boundedness, p(x,A) ≤ 1. The single-
ton {y} is an ortho-set and therefore p(x, y) = p(x, {y}) ∈ [0,1]. �

Any state orthogonal to each of the states of an ortho-set A is orthogonal to every state
in the subspace generated by A.

Lemma 2 Suppose x ∈ � is a state and A ⊆ � is an ortho-set such that x ⊥ A. Then,
x ⊥ Ā.

Proof Since A is an ortho-set and we have p(x,A) = 0, the set A ∪ {x} is an ortho-set.
By Boundedness and Symmetry then we have: for any y ∈ Ā p(y,A) + p(y, x) ≤ 1. But
p(y,A) = 1 and therefore p(y, x) = 0. �

6 O-Projection and Consequences

6.1 O-Projection

The next property we want to consider deals with orthogonal projections.

Property 4 (O-Projection) Suppose x ∈ � is a state and A ⊆ � is an ortho-set such that
p(x,A) < 1. Then there exists a state y ∈ � with the following properties:

1. y ⊥ A, i.e., p(y,A) = 0, i.e., A ∪ {y} is an ortho-set, and
2. p(x,A) + p(x, y) = 1.

O-Projection should remind the reader of the Gram-Schmidt process. Physically, the
ortho-set A represents certain values of a given observable and therefore can be interpreted
as a test: is the state x in A or not. If p(x,A) < 1 the answer to the question above may,
with a certain “probability” be “no”. If the answer is indeed “no” the system is left in a
state y that satisfies the three conditions above. The scalar product can be seen to satisfy
those conditions, when y is the projection of x on the subspace A⊥ orthogonal to A. In a
classical system, p(x,A) < 1 implies p(x,A) = 0 and we can take y = x. The conditions
of O-Projection seem to be logical requirements.

Lemma 3 For any states x, y ∈ �, if x ∼ y then p(x, y) = 1. In particular, p(x, x) = 1.

Proof Since {y} is an ortho-set, if it were the case that p(x, y) < 1, there would exist, by
O-Projection, some state z such that p(y, z) = 0 and p(x, y) + p(x, z) = 1. But p(x, z) =
p(y, z) = 0 and we conclude that p(x, y) = 1. �

6.2 Bases: Existence and Size

Lemma 4 Let A be some ortho-set and assume that B ⊆ Ā is such that, for every x ∈ Ā,∑
b∈B p(x, b) = 1, then B is a basis for Ā.

Proof We only need to show that B is an ortho-set. Let x, y ∈ B , x �= y. We have∑
b∈B p(x, b) = 1. But 1 = p(x,B) ≥ p(x, x) + p(x, y) by Non-negativity. But, by

Lemma 3,
∑

b∈B p(x, b) = 1 and we have p(x, y) = 0, by Non-negativity. �
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Theorem 1 Let A be an ortho-set. Then there is a basis B such that A ⊆ B .

Proof By ordinal induction, we define an ortho-set set Bα ⊆ � for every ordinal α. We let
B0 = A. For a limit ordinal α we set Bα = ⋃

β<α Bβ . For any successor ordinal α + 1, if Bα

is a basis we set Bα+1 = Bα , and if Bα is not a basis, we consider some state x ∈ X such that
p(x,Bα) < 1 and we set Bα+1 = Bα ∪ {y}, where y ∈ � is one of the states the existence
of which is guaranteed by O-Projection. Clearly we have a chain of ortho-sets and there is
some ordinal β for which Bβ+1 = Bβ . The set Bβ is a basis. �

It is a striking property of Hilbert spaces that any two bases have the same cardinality.
The same holds in SP-structures.

Theorem 2 Let A, B be orthosets such that B ⊆ Ā and assume A is finite. Then B is finite
and |B| ≤ |A|. An SP-structure that admits a finite basis, will be called finite-dimensional
and its dimension is the (common) size of its bases.

Proof We have
∑

b∈B

∑
a∈A p(a, b) = ∑

b∈B 1 = |B|. But
∑

a∈A

∑
b∈B p(a, b) ≤∑

a∈A 1 = |A|. We conclude that |B| ≤ |A|. �

We may now define a natural operation on subspaces: orthogonal complement.

Theorem 3 Let X be any subspace. The set X⊥ = {x ∈ � | x ⊥ X} is a subspace and
X = (X⊥)⊥.

Proof Let A be a basis for X. Complete A to a basis A ∪ B , as in Theorem 1. The set B

is an ortho-set orthogonal to A. We shall show that B is a basis for X⊥. First, B ⊆ X⊥
by Lemma 2. Then, for any state x of X⊥, p(x,A) + p(x,B) = 1 and p(x,A) = 0.
We conclude that p(x,B) = 1 and B is a basis for X⊥. Let y ∈ (X⊥)⊥. We have
p(y,A) + p(y,B) = 1 and p(y,B) = 0. We conclude that p(y,A) = 1 and A is a basis
for (X⊥)⊥. �

6.3 Projections on Subspaces

The following defines projections on subspaces.

Lemma 5 If x is a state and A is an ortho-set, such that p(x,A) > 0 there is a state y, such
that:

1. y ∈ Ā, and
2. p(x, y) = p(x,A).

Such a state y will be said to be a projection of x on the subspace Ā.

Proof Let B be a basis such that B = A ∪ C with C ⊥ A. The existence of such a ba-
sis follows from Theorem 1. The set C is an ortho-set and p(x,A) + p(x,C) = 1. Since
p(x,A) > 0, we have p(x,C) < 1, and, by O-Projection there is a state y such that y ⊥ C,
p(x,C)+p(x, y) = 1. But p(y,A)+p(y,C) = 1 and p(y,C) = 0. Therefore p(y,A) = 1.
Also p(x, y) = 1 − p(x,C) = p(x,A). �

The reader may wonder about the case p(x,A) = 0. In this case, by Lemma 2, every
state y such that p(y,A) = 1 satisfies the condition required, i.e., p(x, y) = 0.
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7 Factorization and Consequences

Our next defining property for SP-structure is a factorization property.

Property 5 (Factorization) Let A be an ortho-set and x an arbitrary state. If y, z ∈ Ā and
p(x, y) = p(x,A), then p(x, z) = p(x, y)p(y, z).

Factorization implies that p(x,A) is the maximum of all p(x, y) for y ∈ Ā and that every
such p(x, y) can be factored out through the state taking this maximum. Factorization has
been described in Theorem 1 of [2]. The meaning of Factorization, for Physics, is that, if
one knows that in state y some observable A has a specific value, then the probability of
a transition from x to y is the product of the probability of measuring this specific value
(in x) times the transition probability from the state obtained after the measurement to y.
Factorization seems to be a logical requirement relating tests to two propositions one of
which entails the other: if A entails B , testing for A may be done by testing first for B and
then for A.

Theorem 4 For any state x ∈ � and any ortho-set A, p(x,A) = max({p(x, y) | y ∈ Ā}.
Therefore if B is an ortho-set such that B̄ = Ā, one has p(x,A) = p(x,B). From now on,
if X is a subspace we shall allow ourselves the use of the notation p(x,X). Also, if X and
Y are subspaces such that X ⊆ Y , then, for any x ∈ �, one has p(x,X) = p(x,Y )p(y,X)

where y is a projection of x on Y .

In the last equation note that in the case we have p(x,Y ) = 0 we consider the product on
the right hand side of the last equation to be defined and equal to zero.

Proof By Lemma 5 there is some z ∈ Ā such that p(x,A) = p(x, z) and by Factorization we
have, for every y ∈ Ā, p(x, y) = p(x, z)p(z, y) ≤ p(x, z). The remainder follows easily. �

The Factorization property has many consequences that will be presented now. The first
one concerns the relation of equivalence between states.

7.1 Similarity and Equivalence

Lemma 6 If a ⊥ b, x ⊥ a and p(y, a) + p(y, b) = 1, then we have p(x, y) =
p(x, b)p(y, b).

Proof Let A = {a, b}. The set A is an ortho-set. If p(x, b) = 0, p(x,A) = 0 and, by
Lemma 2, p(x, y) = 0 and the claim is proved.

Assume, then, that p(x, b) > 0. Note that p(b,A) = 1 and p(x,A) = p(x, b). By Fac-
torization, then p(x, y) = p(x, b)p(b, y). �

Theorem 5 Any states x, y ∈ � are equivalent, i.e., x ∼ y, iff p(x, y) = 1.

Proof If x ∼ y, p(x, y) = p(x, x), and we conclude the proof with Lemma 3.
Suppose, now, that p(x, y) = 1 and that z ∈ �. We want to show that p(x, z) = p(y, z).

Without loss of generality, we can assume p(z, x) < 1. By O-Projection, there is some state
x ′ ⊥ x such that p(z, x) + p(z, x ′) = 1. By Boundedness we have p(y, x) + p(y, x ′) ≤ 1
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and therefore p(y, x ′) = 0. The assumptions of Lemma 6 are satisfied for a = x ′, b = x,
x = y and y = z. We conclude that p(y, z) = p(y, x)p(z, x) = p(z, x). �

Theorem 5 shows that, if p(x, y) = 1, then x and y are equivalent, i.e., behave in exactly
the same way as far as p is concerned. No harm can therefore be caused by identifying any
two states x, y such that p(x, y) = 1.

Definition 4 An SP-structure 〈�,p〉 is said to be standard iff for any x, y ∈ �, p(x, y) = 1
implies x = y.

Theorem 6 Let 〈�,p〉 be an SP-structure. The quotient structure 〈�/ ∼, p̄〉 defined by
p̄(x̄, ȳ) = p(x, y) is a standard SP-structure and the transformation x ↪→ x̄ preserves p.

In the sequel we shall only consider standard SP-structures, even if we forget to mention
the fact. In other words, we assume, from now on, that p(x, y) = 1 iff x = y.

7.2 Relativization

We shall also strengthen O-Projection and Theorem 1 by relativizing them to a subspace. The
relativization of O-Projection shows that any subspace of an SP-structure is an SP-structure.
First, we need the following.

Lemma 7 Let x, x ′ be states such that p(x, x ′) < 1. Let y be a state orthogonal to x ′ such
that p(x, x ′) + p(x, y) = 1 as guaranteed by O-Projection. Then, for any ortho-set A such
that x ⊥ A and x ′ ⊥ A, we have y ⊥ A.

Proof Let z be a state in A. Since z ⊥ x ′, by factorization we have p(x, z) = p(x, y)p(y, z).
But x ⊥ z and p(x, z) = 0. But p(x, y) > 0 and therefore p(y, z) = 0. �

Theorem 7 Suppose X ⊆ � is a subspace, x ∈ X is a state and A ⊆ X is an ortho-set of X

such that p(x,A) < 1. Then any state y ∈ � such that

1. y ⊥ A, i.e., p(y,A) = 0, i.e., A ∪ {y} is an ortho-set, and
2. p(x,A) + p(x, y) = 1

is a member of X.

Proof We have A ⊥ X⊥ and x ⊥ X⊥ and therefore, by Lemma 7, y ⊥ X⊥ and, by Theo-
rem 3, y ∈ X. �

We may also relativize Theorem 1.

Theorem 8 Let A be an ortho-set and X be a subspace such that A ⊆ X. Then there is a
basis B for X such that A ⊆ B .

The proof follows that of Theorem 1, using Theorem 7 to show that Bα ⊆ X.
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7.3 Intersections and Orthogonal Sums of Subspaces

In Theorem 3 we defined orthogonal complements for subspaces. Once we have established
the meaning of p(x,X) for a subspace X, as has been done in Theorem 4, the following is
an obvious corollary of Theorem 3.

Corollary 1 For any x ∈ � and any subspace X, one has p(x,X) + p(x,X⊥) = 1.

The proof is obvious.
We may now define other natural operations on subspaces. First we define orthogonal

sums.

Theorem 9 Let X ⊥ Y be orthogonal subspaces. The set X ⊕ Y , defined to be {x ∈ � |
p(x,X) + p(x,Y ) = 1}, is a subspace.

Proof Let A, B be bases for X, Y respectively. The ortho-set A ∪ B is a basis for X ⊕ Y by
Theorem 4. �

We may now define intersections.

Theorem 10 If Xi , i ∈ I is any set of subspaces, its intersection Y = ⋂
i∈I Xi is also a

subspace.

Proof We shall build an ortho-set Aα ⊆ Y for every ordinal α, by ordinal induction. Let
A0 = ∅. For a limit ordinal α we set Aα = ⋃

β<α Aβ . For any successor ordinal α + 1, if
Aα is a basis for Y , we set Aα+1 = Aα , and if Aα is not a basis for Y we consider some
state x ∈ Y such that p(x,Aα) < 1 and we set Aα+1 = Aα ∪ {y}, where y ∈ � is one of the
states the existence of which is guaranteed by O-Projection. By Theorem 7, y ∈ Y . Clearly
we have a chain of ortho-sets and there is some ordinal β for which Aβ+1 = Aβ . The set Aβ

is a basis for Y . �

7.4 Uniqueness of Projections

We may now strengthen O-Projection and Lemma 5. We then prove a fundamental result
on subspaces: the projections guaranteed by O-Projection and Lemma 5 are unique and
independent of the basis considered.

Theorem 11 In a standard SP-structure, if x is a state and A is an ortho-set, such that
p(x,A) > 0, the state y ∈ Ā such that p(x, y) = p(x,A) guaranteed by Lemma 5 is unique
and depends only on Ā, not on A. This unique state will be denoted t (x, Ā) or by t (x,A).

Note that t (x,A) is defined only if p(x,A) > 0 and that: p(t (x,A),A) = 1,
p(x, t (x,A)) = p(x,A) and for any y ∈ � such that p(y,A) = 1 one has p(x, y) =
p(x, t (x,A))p(t (x,A), y).

Proof Suppose both yi i = 0, 1 satisfy the conditions. By Factorization we have p(x, yi) =
p(x, yi+1)p(yi+1, yi) for i = 0, 1 where 1 + 1 = 0. We conclude that p(y0, y1) = 1 and, by
Theorem 5, that y0 ∼ y1. Suppose now that B is an ortho-set such that B̄ = Ā. We have
y0 ∈ B̄ and p(x, y0) = p(x,B) by Theorem 4. Therefore y0 is the projection of x on B . �
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7.5 Completion Is a Closure Operation

The following shows that the completion of an ortho-set into the subspace it generates has
the character of a closure operation.

Theorem 12 Let A,B ⊆ � be ortho-sets. The following properties are equivalent:

1. Ā ⊆ B̄ ,
2. A ⊆ B̄ ,
3. for any x ∈ � p(x,A) ≤ p(x,B).

Proof Item 1 clearly implies item 2 since A ⊆ Ā. Item 3 implies item 1 by Boundedness:
1 = p(x,A) ≤ p(x,B) ≤ 1. Let us show that item 2 implies item 3. Assume A ⊆ B̄ and
x ∈ �. The ortho-set A can be extended into a basis for the subspace B̄ by Theorem 1.
Therefore p(x,A) ≤ p(x, B̄) = p(x,B) by Theorem 11. �

7.6 An Iterative Description of O-Projection

We can also strengthen O-Projection.

Theorem 13 If A is an ortho-set and x a state such that p(x,A) < 1 then there is a unique
state y such that y ⊥ A and p(x,A) + p(x, y) = 1. This state y is t (x, Ā⊥) and therefore
depends only on Ā and not on A.

Proof Suppose yi ⊥ A and p(x,A) + p(x, yi) = 1 for i = 0, 1. We have yi ∈ A⊥ and
p(x, yi) = p(x,A⊥) by Lemma 1. We conclude by Theorem 11. �

Property 4, O-Projection claims the existence of the projection of a state x on the sub-
space A⊥ orthogonal to any ortho-set (in fact any subspace) A. Could we have weakened
our assumption and required only the existence of such a projection when the ortho-set A is
a single state? The answer is negative: for infinite ortho-sets A, i.e., for infinite-dimensional
subspaces the full force of O-Projection is needed. But we shall show now that, for finite-
dimensional subspaces, the existence of o-projections follows from the simple case of a
one-dimensional space, with the help of Property 5, Factorization.

We use the notation n(x,A) or n(x, Ā) to mean t (x, Ā⊥).

Theorem 14 Let A = {a} ∪ A′ be an ortho-set. Assume p(x,A) < 1. Then, n(x,A) =
n(n(x,A′), {a}).

Proof Assume p(x,A) < 1. By Non-negativity, p(x,A′) < 1 and, by O-Projection on A′

the state n(x,A′) exists and we have n(x,A′) ⊥ A′, p(x,A′) + p(x,n(x,A′) = 1 and,
by Factorization, for any state y ⊥ A′ one has p(x, y) = p(x,n(x,A′))p(n(x,A′), y).
We conclude, first, that p(x, a) < p(x,n(x,A′)) and, by Theorem 5, p(a,n(x,A′)) < 1.
Similarly, we see that p(a,n(x,A′)) < 1. Therefore, b = n(n(x,A′), a) is well-defined
and we have b ⊥ a, p(n(x,A′), a) + p(n(x,A′), b) = 1 and for any state y ⊥ a one
has p(n(x,A′), y) = p(n(x,A′), b)p(b, y). We notice, first, that p(n(x,A′), b) > 0 since
p(n(x,A′), a) < 1. For any w ∈ A′ we have p(n(x,A′),w) = p(n(x,A′), b)p(b,w). But
n(x,A′) ⊥ w and p(n(x,A′), b) > 0 and therefore b ⊥ w. We have shown that b ⊥ A.
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We shall now prove that p(x,A) + p(x, b) = 1. We have:

p(x,A) + p(x, b)

= p(x, a) + p(x,A′) + p(x, b)

= p(x,n(x,A′))p(n(x,A′), a) + p(x,A′) + p(x,n(x,A′))p(n(x,A′), b)

= p(x,n(x,A′))(p(n(x,A′), a) + p(n(x,A′), b)) + p(x,A′)

= p(x,n(x,A′)) + p(x,A′) = 1. �

When the ortho-set A of O-Projection is finite, then the state y can be described by a
sequence of O-projections in which the ortho-set considered is a singleton.

8 Notations

Before we can express our next requirement we need some notations. We wish to consider
the following general situation. Suppose X ⊥ Y are orthogonal subspaces and let Z = X⊕Y

be their orthogonal sum. Assume a and b are states that are not orthogonal to Z, i.e., equiv-
alently, none of a or b is orthogonal to both X and Y . The states a and b have projections
on Z: t (a,Z) and t (b,Z).

Theorem 15 Let X ⊥ Y be subspaces and Z = X ⊕ Y . Assume p(a,Z) > 0. If p(a,X) >

0, a has a projection on X and t (a,X) = t (t (a,Z),X).

Proof By Theorem 11 since p(a, t (a,X)) = p(a, t (a,Z)p(t (a,Z), t (a,X)). �

Suppose X ⊥ Y , Z = X ⊕ Y and a, b ∈ Z. We expect the quantity p(a, b) to be related to
p(t (a,X), t (b,X)) and p(t (a,Y ), t (b,Y )). We shall therefore define two related quantities.

Definition 5 Let X ⊥ Y , Z = X ⊕ Y , a, b ∈ �, p(a,Z) > 0, p(b,Z) > 0, we shall define:

αX,Y (a, b) = p(t (a,Z), t (b,Z)) − p(a,X)p(b,X)p(t (a,X), t (b,X))

− p(a,Y )p(b,Y )p(t (a,Y ), t (b,Y )) (1)

ρX,Y (a, b) = 2
√

p(a,X)p(b,X)p(a,Y )p(b,Y )p(t (a,X), t (b,X))p(t (a,Y ), t (b,Y )) (2)

We use the convention that the product by zero of an undefined quantity is equal to zero.
Note, then, that the definitions of α and ρ above are legal even if one or more of the expres-
sions t (a,X), t (a,Y ), t (b,X), t (b,Y ) is not defined, or, equivalently if a or b is in X or
Y (we assumed a and b are not perpendicular to Z). For example, if t (a,X) is not defined,
i.e., if a ∈ Y , then p(a,X) = 0.

Note that ρX,Y (a, b) = 0 iff a or b is in X or Y . Appendix 2 describes those quantities in
Hilbert spaces.

Lemma 8 For any a ∈ Z = X ⊕ Y one has αX,Y (a, a) = ρX,Y (a, a).
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Proof For any a ∈ � ρX,Y (a, a) = 2p(a,X)p(a,Y ) and αX,Y (a, a) = 1 − p2(a,X) −
p2(a,Y ). If a ∈ Z we have p(a,X)+p(a,Y ) = 1 and therefore 1 −p2(a,X)−p2(a,Y ) =
2p(a,X)p(a,Y ). �

Lemma 9 Let x ⊥ y be orthogonal states and let X be the subspace generated by x and y.
If a, b ∈ X and a ⊥ b, then αx,y(a, b) = −ρx,y(a, b).

Proof We have p(a, x) + p(a, y) = 1 = p(b, x) + p(b, y). By Boundedness, we have
p(x, a)+p(x, b) ≤ 1 and also p(y, a)+p(y, b) ≤ 1. We conclude that p(x, a)+p(x, b) =
1 = p(y, a) + p(y, b) and therefore p(b, y) = p(a, x) and p(a, y) = p(b, x). We see that
ρx,y(a, b) = 2p(a, x)p(b, x) and that αx,y(a, b) = 0 − 2p(a, x)p(b, x) = −ρx,y(a, b). �

Definition 6 Let X ⊥ Y and a, b ∈ �, such that a (resp. b) is orthogonal to neither X

nor Y . The projections t (a,X) and t (a,Y ) (resp. t (b,X) and t (b,Y )) are well-defined and
ρX,Y (a, b) > 0. We shall define

ωX,Y (a, b) = αX,Y (a, b)

ρX,Y (a, b)
.

9 A Fundamental Inequality

We present our next assumption.

Property 6 (Inequality) For any orthogonal subspaces X ⊥ Y and any states x, y ∈ Z =
X ⊕ Y , one has |αX,Y (a, b)| ≤ ρX,Y (a, b). In other words, if ρX,Y (a, b) > 0, then
−1 ≤ ωX,Y (a, b) ≤ 1 and if ρX,Y (a, b) = 0, then αX,Y (a, b) = 0.

The physical meaning of the property above is not fully understood at this point. It must
be related to the two-paths experiments that are so central in Quantum Physics. The deep
meaning of Inequality is probably hidden in Theorem 17 that shows that it implies a sort of
continuity property: if p(x, y) is close to 1, then x and y are almost equivalent.

In classical SP-structures, Appendix 1 shows that for any X, Y , a, b we have αX,Y (a, b) =
0 = ρX,Y (a, b). Appendix 2 studies the Hilbert SP-structures. In an SP-structure defined by
a Hilbert space on the real field, ρX,Y (a, b) can be any number in the interval [0,1/2] and
αX,Y (a, b) is either equal to ρX,Y (a, b) or equal to −ρX,Y (a, b). But we can say more. Let us
say that a and b are parallel if αX,Y (a, b) = ρX,Y (a, b) > 0 and say that they are opposite if
−αX,Y (a, b) = ρX,Y (a, b) > 0. Assume now that a and c are parallel. If c and b are parallel,
then a and b are parallel and if c and b are opposite then a and b are opposite.

In an SP-structure defined by a Hilbert space on the complex field, one can define an
angle ϕX,Y (a, b) ∈ [0,2π [ such that, for any states a, b and c that are neither in X nor in Y

one has:

1. ϕX,Y (b, a) = −ϕX,Y (a, b),
2. ϕX,Y (a, b) = ϕX,Y (a, c) + ϕX,Y (c, b),
3. αX,Y (a, b) = ρX,Y (a, b) cos(ϕX,Y (a, b)).

All angles may appear and a state a is uniquely characterized by t (a,X), t (a,Y ), p(a,X)

and an arbitrary angle ψ(a) defined up to an additive constant. Then, ϕX,Y (a, b) = ψ(b) −
ψ(a) (or ψ(a) − ψ(b)).
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In an SP-structure defined by a Hilbert space on the quaternions phases are not angles
but unit quaternions.

We see that in each of the four kinds of SP-structures considered above some additional
properties hold, but they are different and their physical meaning is unclear. Since our pur-
pose is to define SP-structures in such a way to cover classical and all three kinds of Hilbert
space structures, we do not impose any further requirements on SP-structures.

10 Consequences of Inequality

We shall now examine the consequences of our new assumption. First we show that Inequal-
ity can be strengthened: the condition x ∈ Z is superfluous.

Theorem 16 For any states orthogonal subspaces X ⊥ Y and states a, b such that
p(b,X) + p(b,Y ) = 1, one has |αX,Y (a, b)| ≤ ρX,Y (a, b).

Proof Let Z = X ⊕ Y be the orthogonal sum of x and Y . The set Z is a subspace. If
p(a,Z) > 0, by Theorem 11, we have, for w = t (a,Z) ∈ Z, p(a, b) = p(a,w)p(w,b),
p(a,X) = p(a,w)p(w,X), and p(a,Y ) = p(a,w)p(w,Y ). Therefore αX,Y (a, b) =
p(a,w)αX,Y (w,b). Similarly, ρX,Y (a, b) = p(a,w)ρX,Y (w,b). By Inequality we have
|αX,Y (w,b)| ≤ ρX,Y (w,b). Since p(a,w) ≤ 1 we conclude that |αX,Y (a, b)| ≤ ρX,Y (a, b).

If p(a,Z) = 0, then, by Lemma 2, p(a, b) = 0 and αX,Y (a, b) = 0. �

Our next result is a continuity property: if p(x, y) is close to one, then, for any z, p(x, z)

is close to p(y, z).

Theorem 17 For any x, y, z ∈ �, one has:

p(x, z) ≤ p(y, z) + 1/2
√

1 − p(x, y) + (1 − p(x, y)).

Proof Assume, for now, that there is some state y ′ ∈ � such that y ′ ⊥ y and p(x, y) +
p(x, y ′) = 1. Consider any z ∈ �. By Theorem 16: |αy,y′(z, x)| ≤ ρy,y′(z, x). But
2αy,y′(z, x) = p(z, x) − p(z, y)p(x, y) − p(z, y ′)p(x, y ′) ≥ p(z, x) − p(z, y) − p(x, y ′).
Also, ρy,y′(z, x) ≤ √

p(x, y ′). We conclude that p(z, x)−p(z, y) ≤ 1/2
√

1 − p(x, y)+1−
p(x, y).

Now, if p(x, y) < 1, there is such a state y ′ by O-Projection. Assume, then, that
p(x, y) = 1. If there is some state y ′ ∈ � orthogonal to y, we have 1 ≥ p(x, y)+p(x, y ′) =
1 + p(x, y ′), by Boundedness, and we conclude that p(x, y) + p(x, y ′) = 1.

Let us deal now with the limit case: there is no y ′ ∈ � that is orthogonal to y. By
O-Projection this implies that for every z ∈ �, p(z, y) = 1, and our claim is proved. �

Appendix 3 shows that the bounds of Theorem 17 are tight.

11 Similarity-Preserving Mappings

This section presents preliminary results on mappings that preserve similarity. We want,
now, to consider morphisms between SP-structures.
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Definition 7 A morphism from SP-structure S1 = 〈�1,p1〉 to SP-structure S2 = 〈�2,p2〉 is
a function f : �1 −→ �2 that preserves similarity, i.e., such that: for any a, b ∈ �1 we have
p2(f (a), f (b)) = p1(a, b).

Theorem 18 Let S1 be a standard SP-structure. Any morphism f from S1 to any SP-
structure S2 is injective. Any such morphism that is surjective is an isomorphism: it has
an inverse that is a morphism.

Proof If f (a) = f (b) then p2(f (a), f (b)) = 1 and p1(a, b) = 1. Since S1 is standard,
we have a = b. If f is surjective it is bijective and therefore has an inverse f −1. But
p1(f

−1(a), f −1(b)) = p2(f (f −1(a)), f (f −1(b))) = p2(a, b). �

Theorem 19 If f : S1 −→ S2 is an isomorphism, then the direct image by f of any basis
of S1 is a basis of S2 and the direct image by f of any subspace of S1 is a subspace of S2.

The proof is obvious.
We are now interested in studying particular isomorphisms. First those isomorphisms are

automorphisms, i.e., isomorphisms from an SP structure to itself. Secondly there is a basis
of invariant states.

Theorem 20 Let S = 〈�,p〉 be a standard SP-structure and let B be a basis for S. Let
now f : S −→ S be an isomorphism such that for every element b of the base B , we have
f (b) = b. Let A ⊆ B and let X be the subspace generated by A. We have:

1. for any x ∈ �, p(x,X) = p(f (x),X),
2. X is (globally) invariant under f : f (X) = X,
3. if x is not orthogonal to X then t (f (x),X) = f (t (x,X)).

Proof We have p(x,X) = ∑
a∈A p(x, a) = ∑

a∈A p(f (x), f (a) = ∑
a∈A p(f (x), a) =

p(f (x),X). We have proved item 1. For item 2, note that, by Theorem 19, f (X)

is a subspace. By 1 above, A is a basis for f (X). Therefore f (X) = Ā = X. For
item 3, assume p(x,X) > 0. Then, by 1 above, p(f (x),X) > 0 and both t (x,X) and
t (f (x),X) are well-defined. By Theorem 11 t (f (x),X) is the unique state in X such
that p(f (x), t (f (x),X)) = p(f (x),X). But p(f (x),X) = p(x,X) = p(x, t (x,X)) =
p(f (x), f (t (x,X))). �

12 Observables

12.1 Definition

We now want to study physical properties. In Classical Physics, those are numerical values
attached to each possible state: a physical property is represented by a function from the
set of all possible states to the real numbers and essentially (except for some continuity
condition in the infinite case) any such function represents a possible physical property. In
Quantum Physics, such physical properties, often called observables, are represented by
Hermitian, i.e., self-adjoint, operators. Such operators have, for Quantum Physics, a triple
role, that we want to analyze here.
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• First, as in the classical case, they attach, through their eigenvalues, values to states. Those
values, in the Quantum case, are interpreted as mean values.

• But, secondly, those operators define eigensubspaces and projections on those that char-
acterize the change of state caused by a measurement,

• and, thirdly, they represent linear transformations in the state space, typically interpreted
as infinitesimal transformations whose commutation properties are significant.

In many respects such physical properties (or observables) behave in a way that resembles
random variables and therefore maybe they should be termed variables instead of observ-
ables.

Since the third aspect above is central in Quantum Physics, we shall present observables
as transformations of a special kind on SP-structures. Observables, viewed as transforma-
tions, correspond to Hermitian, i.e., self-adjoint bounded linear operators.

Definition 8 Let 〈�,p〉 be an SP-structure. An observable (of the SP-structure) is a trans-
formation r : � −→ � satisfying the following conditions:

1. there exists a decomposition of � in a denumerable set of non-empty pairwise orthogonal
subspaces, i.e., there is a denumerable set I and non-empty subspaces Xj , for every j ∈ I

such that:

• for any j, k ∈ I , if j �= k then Xj ⊥ Xk and
• � = X1 ⊕ · · · ⊕ Xj ⊕ · · · ,

2. for every j ∈ I , there is a real number λj such that

• the λ’s are pairwise different, i.e., for any j, k ∈ I , if j �= k then λj �= λk ,
• the λ’s are bounded, i.e., there some real number M such that for any j , 1 ≤ j ≤ n, we

have |λj | ≤ M ,

3. for any a ∈ �, for any i, 1 ≤ i ≤ n, and for any b ∈ Xi , we have, if
∑

j∈I λ2
jp(a,Xj ) > 0:

p(r(a), b) = λ2
i p(a, b)∑

j∈I λ2
jp(a,Xj )

,

and if
∑

j∈I λ2
jp(a,Xj ) = 0 we have p(r(a), b) = p(a, b),

4. for any j , k ∈ I such that j �= k and for any a, b ∈ � such that ωXj,Xk
(a, b) is defined

(a) if λjλk > 0, then

ωXj ,Xk
(r(a), b) = ωXj ,Xk

(a, b)

and,
(b) if λjλk < 0, then

ωXj ,Xk
(r(a), b) = −ωXj ,Xk

(a, b).

In connection with item 3, note that
∑n

j=1 λ2
jp(a,Xj ) = 0 implies that for any 1 ≤ i ≤ n

we have λ2
i p(a,Xi) = 0. The λ’s are called eigenvalues. The subspace Xj is the eigensub-

space corresponding to the eigenvalue λi (remember: eigenvalues are pairwise different).
The assumption that eigenvalues are bounded ensures the convergence of the denominator
in condition 3. Note that, if r is an observable with eigenvalues λi , it is also an observable
with eigenvalues c λi for any c �= 0. Eigenvalues are defined only up to a (non-zero) mul-
tiplicative constant. Appendix 4 shows that Hermitian bounded operators in Hilbert spaces
define observables.
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In a classical SP-structure, the orthogonal sum is set union and any state is an eigenvector.
An observable is an arbitrary real bounded function on states, defined up to a multiplicative
non-zero constant.

12.2 Eigensubspaces

As expected eigensubspaces corresponding to different eigenvalues are orthogonal. Projec-
tions on eigensubspaces are defined as in Theorem 11.

Theorem 21 Assume r is an observable with eigensubspaces Xj and eigenvalues λj for
j ∈ I .

1. For any x ∈ �, one has
∑

j∈I λ2
jp(x,Xj ) = 0 iff there exists some i ∈ I such that x ∈ Xi

and λi = 0.
2. For any x ∈ � and any i ∈ I , if x ⊥ Xi , then r(x) ⊥ Xi .
3. For any x ∈ � and any i ∈ I one has r(x) ⊥ Xi iff x ⊥ Xi or λi = 0 and x /∈ Xi .
4. For any x ∈ � and any i ∈ I , if r(x) �⊥ Xi , then both t (x,Xi) and t (r(x),Xi) are defined

and they are equal.
5. For any i ∈ I and any x ∈ Xi , we have r(x) = x.
6. For any x ∈ � and any i ∈ I , if

∑
j∈I λ2

jp(x,Xj ) > 0, then

p(r(x),Xi) = λ2
i p(x,Xi)∑

j∈I λ2
jp(x,Xj )

and if
∑

j∈I λ2
jp(x,Xj ) = 0, then p(r(x),Xi = p(x,Xi).

7. For any x ∈ �, r(x) = x iff x is an eigenvector, i.e., a member of some Xj .

Proof Let r be an observable.
For item 1, the if part is obvious. For the only if part, note that, if

∑
j∈I λ2

jp(x,Xj ) = 0,
we must have, for every j ∈ I , λ2

i p(x,Xi) = 0. Therefore p(x,Xi > 0 implies λi = 0. Since
all λ’s are different there is at most one λi equal to zero and there is some i ∈ I such that
λi = 0 and p(x,Xi) = 1.

In the remainder of this proof we shall use 3 of Definition 8 often and without always
mentioning it.

For item 2, note that, if p(x, a) = 0 for a ∈ Xi , then, by 3 of Definition 8, p(r(x), a) = 0.
Therefore x ⊥ Xi implies r(x) ⊥ Xi .

Consider item 3, now. For the if part, use item 2 above and notice that if p(x,Xi) < 1 and
λi = 0 then γ = ∑

j∈I λ2
jp(x,Xj ) > 0 and therefore, for any a ∈ Xi we have p(r(x), a) =

(0p(x, a)/γ = 0. For the only if part assume p(r(x),Xi) = 0 and p(x,Xi) > 0. There
is some state a ∈ Xi such that p(x, a) > 0. But p(r(x), a) = 0 and therefore λi = 0 and∑

j∈I λ2
jp(x,Xj ) > 0, which implies x /∈ Xi .

For item 4, assume p(r(x),Xi) > 0. By item 2 above, p(x,Xi) > 0. Therefore both
t (r(x),Xi) and t (x,Xi) are well-defined. The state t (r(x),Xi) is the only state of Xi such
that p(r(x), t (r(x),Xi) ≤ p(r(x), a) for every state a ∈ Xi . But p(x, t (x,Xi) ≤ p(x, a) for
every such state and

p(r(x), t (x,Xi) = λip(x, t (x,Xi)∑
j∈I λ2

jp(a,Xj )
≥ λip(x, t (x, a)∑

j∈I λ2
jp(a,Xj )

= p(r(x), t (x, a)

for any a ∈ Xi . We conclude that t (r(x),Xi) = t (x,Xi .
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For item 5, suppose that x is an element of Xi . The state x is orthogonal to any Xj for
j �= i. Therefore r(x) is orthogonal to any such Xj by item 2. We see that r(x) ∈ Xi . By
item 4 we have

r(x) = t (r(x),Xi) = t (x,Xi) = x.

Consider item 6, now. The if part is item 5 above. For the only if part, let us assume
that r(x) = x. By contradiction, assume that there are i, j ∈ I , i �= j such that x �⊥ Xi

and x �⊥ Xj . By item 1,
∑

j∈I λ2
jp(x,Xj ) > 0. By item 6, p(r(x),Xi) = λ2

i
p(x,Xi )∑

j∈I λ2
j

p(x,Xj )

and p(r(x),Xj ) = λ2
j

p(x,Xi )
∑

j∈I λ2
j

p(x,Xj )
. But r(x) = x, p(x,Xi) > 0 and p(x,Xj ) > 0 therefore

λ2
i = λ2

j = ∑
j∈I λ2

j p(x,Xj ). Since the λ’s are different, we conclude that λi = −λj . We
then see that there can only be one pair of indexes i, j such that x �⊥ Xi and x �⊥ Xj .
We conclude that x ∈ Z = Xi ⊕ Xj . Since λiλj < 0, by 4 of Definition 8, we have
ωXi,Xj

(x, a) = −ωXi,Xj
(x, a) for any a ∈ � and therefore ωXi,Xj

(x, a) = 0 for any state
a. But, by Lemma 8 ωXi,Xj

(x, x) = 1. �

12.3 Mean Values

The first role of observables: defining mean values, will be discussed now.

Definition 9 Let r be an observable of the SP-structure 〈�,p〉 and let x ∈ � be a state.
The mean value of r in (or at) x, denoted r̂(x) is defined by: r̂(x) = ∑

i∈I λip(x,Xi). This,
possibly infinite, sum is absolutely convergent, since the λ’s are bounded.

The definition of the mean value resembles an expected value if one interprets p as a
conditional probability.

Theorem 22 Assume r is an observable and Bi , i ∈ I is a basis consisting of eigenvectors,
then for any state x ∈ �, we have r̂(x) = ∑

i∈I r̂(bi)p(x, bi).

Proof The states bi that are elements of Xj form a basis for Xj . By Factorization, then,

∑

i,bi∈Xj

r̂(bi)p(x, bi) =
∑

i,bi∈Xj

λj p(x, bi) = λj

∑

i,bi∈Xj

p(x,Xj )p(t (x,Xj ), bi)

= λjp(x,Xj )
∑

i,bi∈Xj

p(t (x,Xj ), bi) = λjp(x,Xj ).

�

Note that Theorem 22 assumes the basis chosen includes only eigenvectors of the ob-
servable r . This condition cannot be dispensed with.

The following shows that mean-value functions are, in a sense, continuous. Our claim
deals only with finite-dimensional structures.

Theorem 23 Let � be a finite-dimensional SP-structure. Let r be an observable. For any
x, y ∈ �,

r̂(x) − r̂(y) ≤
(∑

i∈I

λi

)
(1/2

√
1 − p(x, y) + (1 − p(x, y))).
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The sum of the eigenvalues is well defined since I is finite, by assumption.

Proof

r̂(x) − r̂(y) =
∑

i∈I

λi(p(x,Xi) − p(y,Xi)) ≤ (
∑

i∈I

λi)(1/2
√

1 − p(x, y) + (1 − p(x, y)))

by Theorem 17. �

13 Conclusion and Future Work

This paper has proposed SP-structures as a generalization for the structure of one-
dimensional subspaces in Hilbert spaces. A novel notion of observables in an SP-structure
generalizes self-adjoint, i.e., Hermitian, operators. A physical system should be viewed as
an SP-structure together with a set of observables. To be acceptable, the set of observables
must be rich enough to justify the similarity measure p of the SP-structure. The value of
p(x, y) must be justified by one of the observables at hand. Defining precisely and studying
such sets of observables is probably the next step.
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Appendix 1: Classical SP-Structures

Let � be an arbitrary set and let p(x, y) = 1 iff x = y and p(x, y) = 0 otherwise. We
have: x ∼ y iff x = y. Symmetry is satisfied since equality is symmetric. Non-negativity
is satisfied by definition. Two states x and y are orthogonal iff they are different. Any
subset A of � is an ortho-set and Ā = A. Boundedness is satisfied since p(x,A) = 1 iff
x ∈ A and p(x,A) = 0 otherwise. Suppose, now, that p(x,A) < 1. Then, p(x,A) = 0 and
p(x,A) + p(x, x) = 1. One easily sees that x is a suitable y, showing that x is a suitable y

in the definition of the property of O-Projection. There is only one basis for �: � itself. The
property of Factorization is easily established. Subspaces (i.e., subsets) X and Y are orthog-
onal iff their intersection is empty. Orthogonal sum is set union. If X ⊥ Y , a, b ∈ X ∪ Y ,
αX,Y (a, b) = 0 in all cases and therefore Inequality is satisfied. The quantity ρX,Y (a, b) is
also always equal to zero.

Appendix 2: Hilbert SP-Structures

Assume H is a Hilbert space on the complex field, � is the set of all unit vectors of H and
p is real scalar product: p(�x, �y) =| 〈�x, �y〉 |2.

A2.1 First Properties

We have: �x ∼ �y iff there is a phase factor such that �y = eiϕ �x, by Cauchy-Schwarz. Symme-
try is satisfied since 〈�y, �x〉 = 〈�x, �y〉. Non-negativity is satisfied by definition. Orthogonal-
ity has its usual meaning in Hilbert spaces. An ortho-set is an orthonormal set of vectors.
Boundedness follows from the existence of an orthonormal basis for H that extends any
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orthonormal set of vectors and the fact that �x = ∑
�b∈B〈�x, �b〉�b. Basis has its usual meaning in

Hilbert spaces. Subspaces are closed subspaces. Let X be any subspace and assume that �x
is a unit vector. The quantity p(�x,X) is the square of the norm of the projection of �x on the
subspace X. Let us show that the property of O-Projection is satisfied. If p(�x,X) < 1, the
projection of �x on the subspace X⊥ orthogonal to X, call it �w, is not null. Let �y = �w/ ‖ �w ‖.
Note that ‖ �w ‖2= p(x, y). Therefore 1 =‖ �x ‖2= p(x,X) + p(x, y). Then �y is a unit
vector that satisfies the properties of O-Projection. Let us check Factorization. Assume
�x, �y, �z are unit vectors and X is a subspace. Assume �y, �z ∈ X and p(�x, �y) = p(�x,X).
If �x ⊥ X then �x ⊥ �z and Factorization is satisfied. Otherwise, let �w be the non-null pro-
jection of �x on X and let �v = �w/ ‖ �w ‖. Then 〈�x, �z〉 = 〈 �w, �z〉 = 〈�v, �z〉 ‖ �w ‖. Therefore
p(�x, �z) = p(�v, �z)p(�x, �v).

A2.2 Inequality and Phases

Let X and Y be orthogonal subspaces and �a, �b be unit vectors in their orthogonal sum
X ⊕ Y . Let �aX , �bX , �aY and �bY be their projections on X and Y respectively. Assume, first,
that ρX,Y (�a, �b) = 0. Without loss of generality assume that �aY = �0. Then we have �a ∈ X. If
�bX = �0 one easily checks that αX,Y (�a, �b) = 0. If �bX �= �0 one has

αX,Y (�a, �b) = p(�a, �b) − p(�b,X)p(�a, t (b,X))) = 0

by Factorization.
Assume, now that ρX,Y (�a, �b) > 0. By projection the vectors �a and �b on X and Y respec-

tively we have �a = �aX + �aY and �b = �bX + �bY . But ‖ �aX ‖= √
p(�a,X) and similarly for all

four terms. Therefore the unit-vector t (�a,X) is �aX√
p(�a,X)

and similarly for the other terms.

Therefore

〈�a, �b〉 = 〈�aX, �bX〉 + 〈�aY , �bY 〉

=
√

p(�a,X)p(�b,X)〈t (�a,X), t (�b,X)〉 +
√

p(�a,Y )p(�b,Y )〈t (�a,Y ), t (�b,Y )〉.

Let 〈t (�a,X), t (�b,X)〉 = reiθ and 〈t (�a,Y ), t (�b,Y )〉 = s eiψ . We have

p(�a, �b) =
∣∣∣
〈√

p(�a,X)p(�b,X)t (�a,X), t (�b,X)
〉
+

〈√
p(�a,Y )p(�b,Y )t (�a,Y ), t (�b,Y )

〉∣∣∣
2

= p(�a,X)p(�b,X)r2 + p(�a,Y )p(�b,Y )s2

+ 2
√

p(�a,X)p(�b,X)p(�a,Y )p(�b,Y )rs cos(ψ − θ).

But r2 = p(t (�a,X), t (�b,X)) and s2 = p(t (�a,Y ), t (�b,Y )). Therefore αX,Y (�a, �b) =
ρX,Y (�a, �b) cos(ψ − θ). We have proved Inequality.

Appendix 3: Tight Bounds in Theorem 17

Let �u and �v be orthogonal and let: �x = √
r �u+√

1 − r �v and �y = √
r − ε �u+√

1 − r + εeiδ �v,
for r ∈ [0,1] and ε and δ close to zero, and 0 < r < 1.
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We have

p(�x, �y) = r(r − ε) + (1 − r)(1 − r + ε) + 2
√

r(r − ε)(1 − r)(1 − r + ε) cos(δ)

= r2(1 − ε/r) + (1 − r)2(1 + ε/(1 − r))

+ 2r(1 − r)
√

(1 − ε/r)(1 + ε/(1 − r)) cos(δ)

= r2(1 − ε/r) + (1 − r)2(1 + ε/(1 − r))

+ 2r(1 − r)
√

(1 − ε(1 − 2r + ε)/(r(1 − r)) cos(δ).

We develop to the second order in ε and δ.

p(�x, �y) = r2 − rε + (1 − r)2 + (1 − r)ε + 2r(1 − r)(1 − δ2/2) − (1 − 2r + ε)ε(1 − δ2/2)

− 1/4(1 − 2r)2/(r(1 − r))ε2

= r2 + (1 − r)2 + 2r(1 − r) − rε + (1 − r)ε − (1 − 2r)ε − r(1 − r)δ2

− (1 + 1/4(1 − 2r)2/(r(1 − r))ε2 + O(εδ2).

We conclude that

1 − p(x, y) = r(1 − r)δ2 + ε2/(r(1 − r)) + O(εδ2).

Taking δ = 0 and z = �u Theorem 17 gives r ≤ r − ε + ε + 4ε2 showing that the first term
1/2

√
1 − p(x, y) in Theorem 17 is tight.

Appendix 4: Hermitian Operators and Observables

We are interested in showing that in a Hilbert SP-structure, Hermitian (i.e., self-adjoint)
bounded linear operators are observables as defined in Definition 8.

Let H be a separable Hilbert space, � the set of rays of H and let A be a Hermitian
operator on H i.e., A is a bounded linear self-adjoint transformation of H. We shall define
the transformation r : X −→ X in the following way. Let �x ∈ X, i.e., �x is a unit vector of H.
If A(�x) �= �0 we define r(�x) = A(�x)/ ‖ A(�x) ‖ and if A(�x) = �0 we define r(�x) = �x.

We are going to show that r is an observable in the sense of Definition 8. The set of
eigenvalues of A is the set of λi ’s for i ∈ I . For i ∈ I the subspace Xi is the set of all
unit vectors of the eigensubspace of A corresponding to λi . Let �a, �b be unit vectors and
assume �b is an eigenvector for λi . If

∑
j∈I λ2

jp(a,Xj ) = 0, then �a is an eigenvector for

the eigenvalue 0 and therefore r(�a) = �a and p(r(�a), �b) = p(�a, �b) for any unit vector �b. If∑
j∈I λ2

jp(a,Xj ) > 0, then

p(r(�a), �b) =
∣∣∣∣
〈A(�a), �b〉
‖ A(�a) ‖

∣∣∣∣
2

=
∣∣∣∣
〈�a,A(�b)〉
‖ A(�a) ‖

∣∣∣∣
2

=
∣∣∣∣
〈�a,λi

�b〉
‖ A(�a) ‖

∣∣∣∣
2

= λ2
i p(�a, �b)∑

j∈I λ2
jp(�a,Xj )

.

Let us show, now, that item 4 of Definition 8 holds. Let j, k ∈ I such that j �= k and
�a, �b ∈ � such that neither �a or �b are orthogonal to either Xj or Xk . Let Z = Xj ⊕ Xk . The
projections t (�a,Z), t (�b,Z) and t (r(�a),Z) exist (by Theorem 21 item 3). Let t (�a,Z) =
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√
r �a1 + √

1 − r eiϕ �a2 with 0 < r = p(t (�a,Z), �a1 = p(�a, �a1)/(p(�a, �a1) + p(�a, �a2)) < 1.
Similarly, let t (b,Z) = √

s �b1 + √
1 − seiθ �b2. By the analysis of Appendix A2.2 we have:

αXj ,Xk
(�a, �b) = ρXj ,Xk

(�a, �b) cos(θ − ϕ).

Assume, first, that both λj and λk are strictly positive. We have A(�a) = λj

√
r �a1 +

λk

√
1 − reiϕ �a2 is a non-null vector and its norm is R =

√
λ2

j r + λ2
k(1 − r). Therefore

t (r(a),Z) = A(�a)/R and

αXj ,Xk
(r(�a), �b) = ρXj ,Xk

(r(�a), �b) cos(θ − ϕ). (3)

We see that ωXj ,Xk
(r(�a), �b) = ωXj ,Xk

(�a, �b).
Assume, now that both λj and λk are strictly negative. Then, the proper form for a non-

null vector of t (r(�a),Z) is now (−λj )
√

r �a1 + (−λk)
√

1 − reiϕ �a2 and we also obtain (3).
Assume, now that λj > 0 and λk < 0. Then, the proper form for a non-null vector of

t (r(�a),Z) is λj

√
r �a1 + (−λk)

√
1 − reiϕ+π �a2. Then

αXj ,Xk
(r(�a), �b) = ρXj ,Xk

(r(�a), �b) cos(θ − ϕ + π).

We obtain ωXj ,Xk
(r(�a), �b) = −ωXj ,Xk

(�a, �b).
Similarly, the same obtains if λj < 0 and λk > 0.
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